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Theories are developed to explain the experimental observations of steady, super- 
critical flow in compliant, partially collapsed tubes, presented in the companion paper 
(Part 1). 

It is shown that the measured curves of area us. distance are governed by a combina- 
tion of (i) friction and gravity, which produce mean gradients of area, and (ii) longi- 
tudinal bending and tension forces, which produce standing waves of area superposed 
upon the mean gradients. The experiments confirm the one-dimensional theory for the 
mean gradients: (i) in the absence of gravity, friction causes a pressure rise and a 
positive mean gradient of area; (ii) a downward slope can cancel gravity and lead 
asymptotically to  a uniform state having zero gradients of pressure and area. 

The inviscid dispersion relationship for area waves due to longitudinal bending and 
tension is developed, based on a simple, approximate model for the mechanics of the 
tube. The phase velocity increases as the wavelength decreases, hence the group 
velocity exceeds the phase velocity. Consequently, in steady flows that are super- 
critical with respect to the infinite-wavelength phase velocity, energy can propagate 
upstream and standing waves of area may appear. 

In  the experiments of part 1, longitudinal tension predominated over longitudinal 
bending. The measured wavelengths of standing waves were found to be in general 
agreement with the dispersion relationship for tension-induced area waves. The 
observed streamwjse growth of standing area waves is interpreted physically as the 
attenuation of waves radiating upstream from a source of disturbance such as a shock- 
like rapid increase of area. The rate of wave attenuation indicates that the skin- 
friction coefficient has a large out-of-phase oscillatory component. The observed 
steepness of shock transitions agrees with an approximate theory based on treating 
the forward portion of the shock as the rearward part of the standing wave train that 
the shock drives upstream. 

1. Introduction 
This is a companion paper to Kececioglu et al. (1 981), hereinafter referred to as part 1. 

In  part 1, experimental studies were described for steady, initially supercritical flow in 
compliant, partially collapsed. tubes. In the present paper, the experimental results 
are explained within a theoretical framework, and quantitative comparisons are made 
between theory and experiments. 
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2. Formulation of the theoretical model 
2.1. 8trategy 

Flows of the type discussed in part 1 are, for several reasons, complex in detail: (i) the 
three-dimensionality of the tube configuration affects both the fluid mechanics and the 
structural mechanics; (ii) the mechanics of the flow and of the structure are coupled; 
and (iii) strong nonlinearities are present. Having in mind that rigorous theoretical 
solutions, even if attainable, might well obscure the most important physical pheno- 
mena, we seek here a relatively simple, albeit approximate, theoretical model which can 
provide simple insights into the dominant physical features of the problem. 

Except in the rapid area expansion of a shock wave, the flow may reasonably be 
treated as one-dimensional. The greatest obstacle then to a simple theory is the complex 
structural mechanics of the partially collapsed tube, particularly when longitudinal 
tension and longitudinal bending play significant roles. 

Although the paper is directed mainly to steady flows, time-dependent terms are 
included in the fluid equations in order that wave propagation, which proves to be 
fundamental to the understanding even of a steady flow, may be studied. 

2.2. Thejow model 
The flow is treated as one-dimensional in termsof the pressure,p(x, t), and the velocity, 
u(x,t), which are both assumed to be uniform over each cross-section of the tube. 

The pressure is nearly uniform if the longitudinal area gradient (l/a)(da/dt) is 
sufficiently small, or, equivalently, if the characteristic wavelength of area change is 
large compared with the local tube diameter. 

The flows of part 1 are typically turbulent. Except in a shock transition, therefore, 
velocity profiles are approximately consistent with the one-dimensional assumption. 
In shock transitions, particularly if boundary-layer separation occurs, the wumed 
uniformity of u might entail serious error. 

Viscous effects are represented by the skin-friction coefficient, f = 27,,,/puZ, where 7,,, 

is the wall shear stress, and p the fluid density. We assume subsequently that f ha9 two 
components. The first part,f, is constant and equal to the value appropriate for steady, 
fully developed turbulent flow in a tube of uniform cross-sectional area. The second 
part,f’, represents a small perturbation from!, the physical basis of which is discussed 
later in connection with the growth of standing waves. 

(a) Continuity equation. For a time-varying , incompressible, one-dimensional flow 
in a compliant tube of variable area A ( z ,  t), conservation of mass is expressed by 

aA a 
-+-(UA) = 0. at ax 

(b) Momentum equation. For an unsteady, sloping flow with skin friction T,, the 
equation of motion is 

au au iap dz fu2 
-+~-+--+9-+2-  = 0, 
at ax pax ax D, 

where 0, is the hydraulic diameter, g the acceleration of gravity, and z the local eleva- 
tion in the g-field. 
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2.3. The tube model 

In  the absence of longitudinal tension and bending forces, the local tube law g ( a )  
suffices to connect the local area with the local transmural pressure. The function g ( a )  
may be determined either theoretically (Flaherty, Keller & Rubinow 1972) or experi- 
mentally (e.g., part 1 figure 7). 

Our task now - a difficult one - is to  develop an appropriately simple area relation- 
ship when tension and bending forces are signScant. 

Considered as an elastic structure, the compliant tube is a three-dimensional, thin- 
walled shell of complex shape. For application to a one-dimensional flow model, how- 
ever, all that we require is a reasonable approximation to the way in which the local 
area ratio a depends upon the z-derivatives of a, upon the elastic properties of the wall, 
and upon the transmural pressure and longitudinal tension. The model described 
below achieves the desired simplicity. 

A significant complication is that the cross-sectional shupe depends not only upon 
the local area ratio, a = A/A, ,  but also upon longitudinal tension and bending effects. 
Over the range of area ratios from about 0.3 to about 0.8, however, in which most of 
the interesting supercritical flow patterns of part 1 occur, the cross-section resembles 
a flattened ellipse. 

Accordingly, we assume, solely for the purpose of eatintating the ejfects of longitudinal 
tension and bending, that the tube cross-section is of the shape shown in figure 1. Two 
parallel surfaces separated by the distance 2y are connected by semicircles of radius y. 
As the separation 2y changes, the cross-sectional area also changes. However, since 
the perimeter is constant and equal to that of a circle of radius B, = illo = (A,/n)J,  
each straight segment is of length n(R,-y). Thus the cross-sectional area may be 
expressed as 

or, in dimensionless terms, 
A = nYP0-Y) (3) 

In  applying equation (a), the values of A, and Do used were those pertaining to the 
longitudinal strain E, of the particular experiment. 

2.4. ModiJication of the local tube law for longitudinal tension and bending 

(a)  The additive postuzate. The local tube law, P ( a ) ,  is governed by a single stiffness, 
that due to circumferential bending. However, when the cross-sectional area varies 
longitudinally, longitudinal bending stiffness and membrane stiffness due to longi- 
tudinal tension are also capable of resisting changes of shape and area. 

For our simple quasi-one-dimensional model of the tube mechanics, we postulate 
that the three stsnesses above are separable and act additively to support the trans- 
mural pressure. Thus the modified tube law is written as 

Here APt and APb represent the stiffness of the tube against collapse due to the effects 
of axial tension and bending, respectively. 

(b) Circumferential bending. In  the geometry of figure 1, the circumferential bending 
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FIUURE 1. Geometric model used to estimate stiffnesses due to longitudinal tension and bending. 

stiffness would be physically due to the forces required to bend the semicircular end 
regions to a new radius of curvature. However, in applying equation (5 ) ,  we make the 
assumption that the circumferential stiffness function B (a) is the same as that deter- 
mined for the actual tube under longitudinally uniform conditions. 

( c )  Axial tension. To formulate an estimate of the tension stiffness Apt,  consider in 
figure 1 the transverse displacements of the straight segments of the wall. If the 
longitudinal radius of curvature in an axial plane is R, longitudinal membrane forces 
are capable of supporting a pressure difference of magnitude 

where T = B ,  Eh is the axial force per unit perimeter resulting from the axial strain ez, 
h is the wall thickness, and E is the modulus of elasticity. It has been assumed for (6) 
that the slope @/ax  is small; or, more precisely, that (@/ax)2 N (Ay/A)2 -g 1, where A 
is the characteristic distance over which the variation Ay occurs. 

Expressing a2y/ax2 in terms of a-derivatives by means of (4), we get 

(7) 

Here, the ratio of the second to the first term within the square brackets is of order 
Aa/2(  1 - a), where ha is the change in a that occurs over the characteristic distance A. 
For typical standing waves of area (part 1); ha 0.05 and 01 E 0-4, for which values 
the ratio of the nonlinear term to the linear term is only of order 0-04. In what follows, 
therefore, we neglect the second term of (7) and retain only the linear term. We note, 
however, that, in shock waves, Act 2 0.6 and a 0.7; the two terms are then of the 
same order. 

Equation (7) now simplifies to 

Both this and equation (7) blow up when a+ 1, not altogether surprisingly. A more 
detailed consideration of the tube mechanics shows that the treatment employed here, 
namely the combination of the geometry of figure 1 with (5) and (6), becomes quite 
unrealistic when the tube is nearly round; for instance, (3) yields ( d y / d x ) / ( d A / d x )  + 00 

as a + 1. Accordingly, it is improper to use the approximation of ( 8 )  for a too close to 
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unity. For this reason, together with that given in the preceding paragraph, it is 
improper to use (8) for the rearward part of a shock wave. 

Strictly speaking, T is a function of axial distance because of skin friction forces. 
However, the variation of T was generally small for the experiments of part 1. No 
significant features of behaviour are lost by the further assumption that T is constant. 

( d )  Longitudinal bending. The stiffness against bending of the two parallel surfaces of 
figure 1 is given by 

where the moment of inertia I is equal to hs/[12(1 - v2)], and Y is Poisson'sratio. 
As in the case of the simplification leading to (8), only the linear term is retained 

when y is expressed in terms of a through (4). The resulting approximate expression is 

K p  a4a 
3 2 ( 1 - a ) 4 ~ * '  

APb 

The four nonlinear terms neglected are in fact small compared with the surviving linear 
term of (lo), except in shock waves. And, as with the tension term, the model leading 
to ( 10) loses validity as a +- 1. 

( e )  The modiJied tube law. Combination of ( 5 )  with (8) and (10) results in 

Equations (l) ,  (2) and (1 1) comprise the set of governing equations for the dependent 
variables A, u andp in terms of the independent variables 2 and t .  Upon differentiation 
of (1 1) to  obtain ap/ax, and substitution of the latter into (2), we are left with two 
equations for A and u. Equation (2) then contains a fifth-order term, representing 
longitudinal bending, and a third-order term, representing longitudinal tension. 
(f) Evaluation of the structural model. There is obvious crudity in several of the 

approximations underlying (1 1). Some evaluative comments follow. 
(i) The assumedgeometry of figure 1 is in keeping with the spirit of a one-dimensional 

flow model. It is used here only to estimate the stiffnesses APt and AP,, whereas the 
circumferential bending stiffness function P ( a )  is related to the actual geometry 
(although see comment immediately below). 

(ii) The assumption that circumferential bending and longitudinal tension and 
bending act independently, and are thus additively superposable, is clearly incorrect 
for large deformations with compound curvature (e.g. a corrugated sheet is stiffer in 
bending than a flat sheet). Because of tube collapse, the circumferential curvature is 
normally very much larger than the longitudinal curvature. The effect of compound 
curvature is to increase the effective bending stiffness constant, Kp.  This may be quite 
pronounced with respect to stiffness in longitudinal bending. Considering the two 
correction terms of ( 5 ) ,  the formulation for AP, as given by (10) is therefore of much 
weaker validity than the formulation of AP, as given by (8). 

(iii) One aspect of the coupling between the different stiffnesses is that, due to  
longitudinal tension, the efectiue transmural loading on the wall is variable around the 
perimeter, whereas the experimental function B (a) is necessarily measured with uni- 
form transmural loading. The non-uniform loading produced by longitudinal tension 
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in fact changes the shape of the cross-section and thus indirectly affects the function 

(iv) Perhaps the most difficult assumption to justify is that longitudinal bending and 
tension stresses, as modelled on the straight upper and lower surfaces, are representa- 
tive of those acting on the entire perimeter. In  our experiments, axial tension generally 
dominated over axial bending forces, so we neglect the latter for the present. Consider a 
local area minimum : a2a/at2 in (1  1 )  is positive, hence tension acts like a decrease in 
external pressure and tends to pull the upper and lower walls of figure 1 further apart, 
thereby increasing the area. Over much of the side walls, however, tension pulls the 
surfaces inward, seeming to counteract the anticipated area increase. There is no 
contradiction, however, since both displacements are consistent with an increase in 
area for a tube of fixed perimeter, i.e. both forces tend to produce a more rounded shape. 
Thus the net effect of tension on the entire perimeter is, with regard to cross-sectional 
area, at  least consistent with the direction of change given by the model. But we re- 
iterate, as explained earlier, that the quantitative relationship that connects the 
longitudinal curvature with the area derivatives becomes incorrect as a --f 1. 

(v) Further complications arise when modelling unsteady flows. To account for 
unsteadiness in the tube law would require, in addition to those already included, 
terms representing wall acceleration and viscoelasticity. We make no attempt to 
include these. 

Notwithstanding all that is said above, equation ( 1 1 )  appears to represent the 
essential tube mechanics sufficiently well for a qualitatively correct determination of 
those physical events that are due to longitudinal tension and bending, particularly 
for small-amplitude, long-wavelength phenomena. We offer two reasons for this claim, 
as follows: Firstly, there is the good agreement between the experimental results of 
part 1 with theoretical predictions based on ( 1  1) .  Secondly, in a related investigation in 
our laboratory (Swidler 1980) the theoretical calculation of tube shape of Flaherty 
et al. (1972) was modified to take account of a circumferentially varying transmural 
loading due to a combination of uniform transmural pressure with longitudinal 
tension and non-uniform longitudinal curvature. Numerical integrations of the tube 
contour, leading to a fairly accurate determination of the actual tube shape and 
cross-sectional area, provided a means for testing the validity of (8).  Swidler found that, 
in the range 0.30 < a < 0.80, (8) is essentially correct in form, at least for small area 
changes. As to magnitude, the right-hand side of (8) should, according to Swidler, be 
decreased by a correction factor between 0.75 and 0.90; the value of the factor is only 
weakly dependent upon a. On the basis of Swidler’s findings, (8) is expected to provide 
rewonably good agreement with the experimental observations in the range 0.3 < a 
< 0.8. 

2.5. Methods of solution 

@(a).  

Solutions to the governing equations were sought by two different methods. 
(a) Unsteady $ow with small perturbations. With the assumptions that A ,  u and f 

could each be expressed as the sum of a constant term plus a small-amplitude disturb- 
ance variable in both x and t ,  linearized analyses were performed to obtain the dis- 
persion relationship for wave propagation and information as to wave growth and 
decay. 

( b )  Steady $ow with large perturbations. The full nonlinear governing relationships, 
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equations ( l ) ,  (2) and (1 l) ,  were integrated numerically, with the objectiveof determin- 
ing how the linearized results would be modified by the nonlinear terms. 

3. Effects due to mean skin friction 
The terms in the momentum equation that represent longitudinal bending and 

longitudinal tension contain the derivatives a5a/ag5 and Pa/ap. It will be shown later 
that these terms are responsible mainly for wave-like variations in a that are 
superposed upon mean changes in a brought about by friction and gravity. 

We now confine our attention to regions where these terms are negligible, and for the 
present we omit them from the analysis. Thus we exclude from consideration zones 
near attachment points to rigid tubes, and also zones of supercritical-subcritical shock 
transitions, for in such regions the two derivatives are generally large. 

3.1. Theoryof steady$ow 

We employ equation (1) with aA/at = 0,  equation (2) with &/at = 0, equation ( 5 )  with 
pe = constant and AP, = APb = 0,  equation (1) of part 1, and we note that 
a/ag = d / d t .  Combining these, we get, as in Shapiro (1977), 

wherefis the local mean friction coefficient and S = u/c,. 
(a) Gravity-friction JEows. Consider a downward-sloping, supercritical flow in which 

the constant conditions u, and a, are approached asymptotically, with friction exactly 
counterbalanced by gravity. In equation (12), we set da/dt  = 0, a = a,, and the slope 
dz/dx= -sine. We also define the reference velocity uo= &/A,  = u,a,. Thus we 
obtain 

- gDll 8 f = -a, sin 8, 
2u; 

from whichfmtiy be determined using the experimental data for Q, 8 and a, obtained 

(b) Pure friction$ows. With a horizontal tube, for which dzldx = 0, equation (12) 
inpart 1. 

yields / 

da - 8 2  - = 2f-. s=-1 
When S2 B 1, this is approximated by 

d a l d l  g 2f. (15) 

3.2. Comparison of theoretical and experimental results 
(a) Gravity-friction flows. In  figure 2, the experimental values off inferred from the 
data(e.g.,figuresgand 10ofpart 1)usingequation (13),are comparedwiththeaccepted 
values for laminar and turbulent flow in smooth, circular tubes. The agreement is 
reasonable, considering that the values of a in the experiments were correlated with 
the values of Re (a ranged from 0.27 at  Re z 2000 to 0.69 at Re r 15 000). At the lower 
values of a, several factors account for the relatively large deviation from the upper 
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103 104 
Re 

FIQURE 2. Experimental values of friction coefficient for equilibrium gravity-friction flows. Dot- 
dash lines show accepted values for laminar and turbulent flow in smooth circular tubes (Schlich- 
ting 1968). 0,  0 = 4.8O; 0 ,  8 = 9.0". 

O m 5  I- 
I , I  I I , ,  I I 1  

I 03 104 
Re 

FIQURE 3. Experimental values of friction coefficient for tension-friction flows, compared With 
accepted curve for smooth circular tubes. 

(turbulent) curve: (a) the unusual two-lobed cross-sectional configuration, with near- 
contact of opposite walls, (b) the relatively large frictional effect due to the catheter 
probe, and (c) the relatively large experimental error, sincefis proportional to a:. 

(b) Pure frictionflbws. Since the perimeter of the tube remains constant, the Reynolds 
number Re = UDJV is the same at all locations, irrespective of changes of area. Thusf 
is anticipated to be constant provided that the flow is.fully developed, at  least to the 
degree that the friction relationship f (Re)  is independent of cross-sectional shape. 
Most of the horizontal experiments of part 1 designated as ' tension-friction' were 
performed with large values of#. Thus equation (15) predicts that da /d t  = constant. 
Examination of the experimental results (e.g. figure 14d of part 1) shows this to be 
substantially correct as regards the mean variation a(E), that is, when the tension 
waves usually present are neglected. 

The values of f inferred from the experimental data with the use of equation (15) 
are shown in figure 3, where they are again compared with the accepted values for 
smooth, circular tubes. The agreement is very satisfactory, thereby indicating that the 
tension waves are not large enough to affect the magnitude of the mean skin friction. 
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4. Linearized analysis 
In  order to investigate wave propagation, we reintroduce the terms representing 

longitudinal bending and tension, and then linearize the governing equations by 
assuming that there are only. small time-dependent perturbations from a uniform 
state 

In  terms of 5 and a dimensionless time defined as T =  c,t/Do, the area ratio, 
dimensionless speed, and friction coefficient are expressed as 

a(E,T) = a+a'(E,r), a'/a g 1, ( l ea )  

S(5)T) = B+S'(&r), s p - 4  1) W b )  

f ( 5 , T )  = f+f'(5,7), r/f < 1, (16c) 

where Z, 8 andfare constants. 
An unnecessary complexity is here avoided Ijy treating c, as constant. Figure 7 of 

part 1 shows that there is little variation of c, over the range between 0.3 and 0.8. No 
significant physical effect& are overlooked by neglecting in equations (18) and (19) the 
small terms in the derivative dc,/da which would otherwise appear. 

4.1. The perturbation equations 
The foregoing are introduced into (1)  and (2) (with ap/axcalculated fromequation (1 1)). 
In the usual manner, only terms of first order in the primed quantities and their deriva- 
tives are retained, and hjgher-order terms are discarded. Thus one obtains the linear- 
ized equations : 

gD,dz +, (1+2E-<+t )  2 8 y  = 0. (18) 
+CZ,Z a S E j  

In order to be consistent with the small-perturbation wsumptions of (16), we elimi- 
nate changes of mean area due to friction, by admitting just enough downward slope 
for the gravity term of equation (18) to cancel the mean friction term 28!4ffZ. This is 
tantamount to setting equation (12) to zero. 

After appropriate differentiations of equations (17) and (18), S' is eliminated, and 
one arrives at  a sixth-order, linear partial differential equation for a'(E,r): 

If variations in c, were included, the term [(A- 3)/Z2] (aa'/8Qe would appear on the 
left-hand side of (19). However, in the experiments, this term waa only about 1 yo aa 
large as the third term of (19). 
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4.2. Wavelike solutions 
In  order to investigate the wavelike behaviour inherent in flows governed by (19), we 
take advantage of the linearity of this equation and consider elementary wavelike 
solutions given by the real part of - 

a' = & exp [i(wt - k z ) ]  = & exp [ % ' ($7 - k D O f ) ]  

where & is a real amplitude; w is real and equal to the circular frequency; k = kr + iki is 
the complex wavenumber; ki is the spatial damping coefficient; k, = 2n/A is the wave- 
number; h is the wavelength; and the phase speed c is given by 

c = u/k, .  (21) 

We further assume that, for reasons explained in 55,f' is sinusoidal, with the phase 
angle 4. It is represented by the real part of 

f' = j exp  [i(ot - kx + +)I = j exp  [i r 3 T -  c, k~ 0 5 + # ) I ,  (22) 

Substitution of equations (20) and (22) into (19) leads to the dispersion relationship, 
wherelie real. 

4.3. Inviscid wave propagation 

A small amount of frictional dissipation affects mainly the decay of waves, and changes 
the propagation speed only slightly. We therefore examine the inviscid dispersion 
relationship connecting phase velocity with wavelength, found by setting f = 0 in 
(23). 

(a) The dispersion equation. Equation (23) now yields only real values for the wave- 
number, ko= 27r/A0, where the subscripts signify the inviscid caae. By setting a,= 0 in 
(23), which is equivalent to calculating (c - ti), we obtain the phase velocity c relative to 
thefluid: 

Denoting the three terms on the right-hand side by c2,, ct and c:, one recognizes the 
respective effects of the three stiffnesses present, namely: (i) circumferential bending 
stiffness; (ii) transverse stiffness due to longitudinal membrane tension; and (iii) longi- 
tudinal bending stiffness. 

For very long waves, such that ct Q c, and cb < c,, circumferential bending stiffness 
predominates; then c 2: c, and is independent of wavelength. For very short waves, 
such that cb B c, and cb B ct, longitudinal bending stiffness predominates; then c 21 c,,, 
and c is proportional to A f Z .  In  the intermediate ranges of wavelengths, no simple rule 
prevails: the relationship between c and A, depends upon the ratios of the three stiff- 
nesses. 
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t 

x A * *  A* 
Wavelength 

FIGURE 4. Dispersion relationship, c ( A ) ,  according to equations (24) and (25). 

(b) The group velocity. The energy in the dispersive wave system propagates at  the 
group velocity, given by the expression (Whitham 1974) 

the last part of which is particular to the c ( A )  relationship of (24). Inspection of equa- 
tion (24) shows that dc/dA c 0, i.e. c increases monotonically as the wavelength short- 
ens, hence 

as in figure 4. 
Consider now a eteady, supercrjtical flow, such that u > c,. If a particular source of 

disturbance, like a shock transition, produces wavelengths shorter than A*, for which 
c;J; = u (see figure 4), energy from the source in those wavelengths can radiate 
upstream. Furthermore, one particular wavelength, A**, will have an upstream phase 
speed exactly equal to the downstream flow velocity. That wavelength will therefore 
be perceived as a standing wave of area, as may be seen in part 1, figures 1,10,11 and 13. 

By similar considerations, one may conclude that standing waves of area cannot 
appear downstream of a stationary area disturbance. 

(c) Relative importance of bending and teneion. Consider pure longitudinal bending 
waves (cb), and pure tension waves (cJ, and introduce the relationships 

cg = c-Adc/dA = c[2-(cm/c)2J, (26) 

c , ( 4  > c ( A )  > cm (26) 

K p  = [E(h/R0)5]/[12( 1 - P)], v = &, and T = ex Eh. 

In  the experiments of part 1, h/h ranged from 0.005 to  0.02, and E ,  from 0-023 to 
0.174. Therefore (Cb/ct)* was at  most about 0.07. Considering the shortest waves 
(A z 5cm) and the smallest axial strain ( E ,  = 0*023), neglect of the last term in 
equation (24) would produce an error in c of only 8 %. 

Since this is 80 small, and in view of the approximate nature of the theory and the 
size of experimental error, longitudinal bending has been neglected in all that follows. 
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FIGURE 6. Comparison of measured and theoretical wavelengths. - * -, equation (27) ; - - -, 
equation (27) reduced by 30% (see text); open symbols, steady flow experiments; closed 
symbols, unsteady flow experiments (Jan 1980). 0,  6,  = 0.023; 0, 0.046; D,  0.091; A ,  0.110; 
V, 0.142; 0, 0.174; 0 ,  0.016. 

(d)  Comparison with experiments. Returning to equation (23), and recalling that the 
coefficients of (kDo)6 and of (kD,) are to be neglected, we calculate the wavelength of 
standing waves in a steady flow by setting Q = c. The result may be brought into the 
form 

which is represented in figure 5 by the dot-dash line. If the formulation of the longi- 
tudinal stiffness is reduced by 30 yo, representing the outer limit of correction of (8) 
according to the calculations of Swidler (1980) for a f 0-8, the theoretical relationship 
would be shown in figure 5 by the dashed line. 

Using the area data for the tension-friction experiments of part 1, peak-to-peak and 
trough-to-trough wavelengths were measured, as well as the associated local mean 
values of Z. For the other quantities appearing in (27), c,(E) was determined from the 
local tube law (figure 7, part 1); T = ex Eh was determined from the measured strain 
ez and from a measured value of Eh ( =  T / q  in a calibrated stretching); and 
8 = 4/c,, where ti = Q / ( A  - A p ) .  

The experimental results for stationary waves are shown in figure 6 by the open 
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symbols. Except for a few points, largely those for low tension, all the data lie above 
the dashed line. These low points represent cases in which longitudinal bending may be 
of some significance: note that, for a given s, (24) indicates a smaller theoretical wave- 
length if longitudinal bending is significant. 

Considering the approximations of the theory and the magnitude of experimental 
error, the agreement between theory and experiment is most satisfactory, and lends 
credibility to the simple model representing the mechanics of the tube. 

Also shown in figure 5 are the results of experiments in our laboratory on the refilling 
of a tube that over half of its length was initially in a state of partial collapse (Jan 
1980). The main wave of refilling was preceded by propagating precursor waves due to 
tension. On the assumption that these were well dispersed, measurements of wave- 
length and speed of advance of the crests yielded the closed symbols of figure 5. 
Inasmuch as the apparatus was not long enough for the waves to be truly well dispersed, 
the agreement here is also quite satisfactory. 

5. Wave growth in steady flow 
From the preceding discussion, it appears that steady inviscid flow in a horizontal 

tube would exhibit standing waves of constant wavelength and amplitude, provided 
that a suitable source of disturbance were present. The experiments of part 1, how- 
ever, show that the amplitude increases in the flow direction. That this is not primarily 
due to the increase in mean area associated with mean friction becomes evident from 
the gravity-friction experiments of part 1, in which the amplitude of area waves grows 
even though the equilibrium ratio, a,, remains constant. 

This apparent downstream growth, it should be clear from 6 4, is in reality a mani- 
festation in steady flow of the attenuation of waves radiated from the shock transition, 
which propagate upstream relative to the flow. In  what follows, downstream ‘growth’ 
and upstream ‘ attenuation’ signify the same phenomenon. 

Here we consider only stationary waves in a steady flow. Accordingly we remove the 
time-dependence from (20) and (22) by setting o = 0. Furthermore, in (23) we set 
c = 0. 

5.1. Attenuation due to constant skin friction 
Equation (23) shows that, even with mean skin friction exactly balanced by gravity, 
the phase relationships in an area wave are such that mean skin friction affects the 
solution for a’(&). We may explore the influence of mean skin friction alone by setting 
f =  Oin(23). 

With these simplifications, (23) yields the following pair of simultaneous equations 
for k- and k,: 

ap(G2-d) 
@- 3kr k! - [ TDohQ ] kr = 0, 

Provided that (ki/ko)z Q 1/27, where k, = 2n/& as given by (27) is the value of kr 
for the inviscid case, the solution to (28) is approximated within f 2 94 by the 
expressions 
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FIGURE 6. Growth coefficient v8. wavenumber. Open symbols, tension-friction flows; closed 
symbols, gravity-friction flows ; circles, experimental data ; squares, theoretical values baaed on 
mean skin friction coefficient, equation (29 b) .  

k f  = (:)' N k$[ 1 + 3(ki/ko)2].  

In  theexperiments of part 1, the ratio ko /k ,  N 10, hence the approximations above are 
reasonable. Equation (29b)  shows that the wavelength is indeed affected only slightly 
by skin friction. However, as indicated by (29a), skin friction produces a streamwise 
growth (or upstream decay) of amplitude which is independent of both tension and 
wavelength. If 8 % 1, the amplitude grows streamwise by the factor e in the distance 
Af = Z13f. 

(a) Comparison with experiments. In the gravity-friction experiments, .Z = a, was 
independent of 6 and the wave amplitudes were read directly off the strip chart show- 
ing a(6). In the tension-friction experiments, CC increased (almost linearly) with f ;  the 
wave amplitudes were interpreted as the oscillatory components superposed upon the 
mean curves of Z(6). 

Graphs of log amplitude 218. f yielded reasonably straight lines, the slope of which 
waa taken to be kiD,. Experimental values of k iDo  are shown in figure 6, plotted against 
the local wavenumber, 27rD0/h. In each gravity-friction flow, h was nearly constant, 
while in each tension-friction flow h increased in the flow direction due to the frictional 
increase of 8. 



Steady, supercritical $ow i n  collapsible tubes. Part 2 405 

Figure 6 also compares the experimental data with theoretical values calculated 
from (29a);  in the latterfwas taken to be the value for turbulent flow represented by 
the upper lines in figures 2 and 3. Significant discrepancies are present between experi- 
ment and theory. Whereas the theory exhibits no effect of wavelength, the observed 
wave growth in fact increases substantially as the wavelength decreases. Moreover, 
the experimental growth rate is much larger than the theoretical, especially for short 
waves. 

Clearly the observed growth rates cannot be explained by a mean skin-friction 
coefficient alone. Indeed, at large wavenumbers, the latter appears to play a small role 
if any. 

5.2. Wave growth due to curvature effects 

As the wavelength/diameter ratio decreases, several effects not hitherto considered 
come into play. 

(i) Curvature of the streamlines, which is ignored in the one-dimensional theory, 
induces non-uniform velocity profiles. At an area minimum, for instance, the velocity 
near the wall tends to be larger than the average over the cross-section. For the same 
volume flow rate, the ratio of the actual momentum flux to the momentum flux carried 
by the one-dimensional mean velocity is always greater than unity, and increases with 
the degree of ‘bowing ’ of the velocity profile, The streamwise gradient of this ratio 
(unaccounted for in the one-dimensional model) increases as the wavelength decreases. 

(ii) Also associated with streamline curvature is a non-uniform pressure over the 
cross-section. At an area minimum, for instance, the pressure at the wall is lower than 
the average over the cross-section. In  equation (5), the pressure loading on the wall, 
p -pc,  is determined by the wall pressure, whereas in equation (2) the pressure gradient 
i3p/&c relates to the average pressure over the cross-section. Consequently a discrepancy 
associated with wall curvature is present. 

(iii) Because of the non-uniform velocity profile mentioned in (i), the effective 
velocity at the edge of the high shear layer near the wall is different from the one- 
dimensional mean velocity. At  an area minimum, therefore, the shear stress tends to 
exceed that which would be associated with the mean velocity. In  addition, the 
longitudinal pressure gradient, together with the time lags involving the adjustment 
of the boundary layer to the local longitudinal pressure gradient, produce effects on 
shear stress not accounted for in the one-dimensional theory. 

A detailed analysis of the several phenomena listed above would be out of keeping 
with the nature of this paper. However, the several factors mentioned suggest a simple 
way of showing that even small wall curvature effects may cause large changes in 
wave growth. They also lead to a means for estimating how wavenumber affects 
growth rate. 

Each of the three effects mentioned involves, in one way or another, a correction 
term to the momentum equation, (2). All three are associated with wavy-wall stream- 
line curvature. In  the context of the geometry of figure 1, we make the plausible 
conjecture that each correction term is represented principally by a quantity pro- 
portional to d2a/d12. We do not attempt here to deal with the three effects separately, 
nor do we deal specifically with the signs, phases and magnitudes of the respective 
proportionality constants. Instead, and with no purpose beyond showing the im- 
portance of such terms, we look at  the effects of oscillatory skin friction alone. 
(a) Oscillatory skin friction. Investigations of turbulent flow over a wavy plate 
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(Benjamin 1959; Zilker, Cook & Hanratty 1977) and of flow through a wavy pipe 
(Hsu 1968; Hsu & Kennedy 1971) show that the perturbation skin-friction coefficient 
f' (based on the local one-dimensional velocity) has a distinct sinusoidal form, both 
the amplitude and phase of which depend on the amplitude-wavelength ratio. For 
instance, in a pipe with a ratio of radius amplitude to wavelength of 1/45, the oscilla- 
tory amplitude of skin-friction coefficient is 48 % of the mean skin-friction coefficient, 
and the peak in f' is 26" upstream of the area minimum. 

For the purpose of an illustrative calculation, we now suppose thatf' peaks exactly 
at the area minimum, i.e. that it  is 180" out of phase with the area oscillation. Thus we 
representf' in equation ( I  6 c) by r(d2a/dg2), where r is a positive dimensionless constant. 
This is equivalent to expressing (22) as 

f'(5) = r&(kDo)2exp[i( - kD&+?r)]. (30) 

Then, setting f = r&(kDo)2 and q5 = T,  (23) is again solved for standing waves by 
2 %, are setting c = 0. In  the range where (ki/k0)* 6 1/27, the results, accurate to 

As before, since ko/k, N 10, equation (31 b) shows that friction has little effect on the 

Using equation (27) to elimiimte T in equation (31 a), we arrive at 
wavelength. 

Thus the oscillatory component of friction augments the growth rate kiDo by an 
amount that is inversely proportional to the square of the wavelength. This is the same 
form of dependence associated with the attenuation of capillary waves on a free surface 
(Sorrel1 & Sturm 1977), although the mechanism of dissipation is different in its details. 

(a) An illustrative calculation. In a typical experiment with an intermediate tension 
(ez = 0-11), an intermediate speed index (B = 6-0), and an area ratio Z = 0.40, 
measurements of the area wave train gave the following values: le, = 2n/h = 0.66 cm-', 
k, = 0.076 cm-l, and (d2a/d&2)peak = f 0.05. 

Using these values, and takingf from figure 3 as 0.0077, the value of the coefficient r 
required to satisfy (32) was found to be r = 0.05; correspondingly, If' I /$= 0-3. In 
this case, therefore, a properly phased, oscillatory skin-friction coefficient of modest 
amplitude (about one-third the mean skin-friction coefficient) increased the growth 
rate by threefold. There is too much scatter in the experimental data to ascertain how 
well the experimental data of figure 6 agree with the theoretical quadratic wave- 
number dependence shown in (32), but the general trend is correct. 

The evidence seems quite convincing that effects lying outside the one-dimensional 
model account for a large part of the wave growth, particularly a t  the shorter wave- 
lengths . 
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FIQURE 7. Schematic diagram of a([). 

6. Shock thickness 
6.1. Coupling of the wave train with the shock 

In  part 1 data were presented for the static pressure recovery across a standing shock. 
Now we consider one detail of shock structure, namely the length of the shock, 
expressed in terms of the maximum slope ( ~ ? a / @ ) ~ ~ ~  in the shock. 

In figure 7, the shock is assumed to extend from point 1 to point 2, with point 3 
lying at the position of maximum slope. Consider a reference frame in which the fluid 
upstream of the shock is stationary. The shock propagates toward the stationary fluid 
and also radiates disturbances, some of which, owing to the form of the dispersion 
relationship, race ahead of the shock in the form of area waves. Those area waves of 
length such that their phase speed matches the local mean fluid velocity stand station- 
ary in the laboratory frame. Thought of in this way, the standing wave train in the 
steady flow and the standing shock wave which generates that train are inherently 
unseparable. The shock drives the wave train, and the segment 1-3 in figure 7 is both 
the front part of the shock and the rear of the wave train. 

Although the wave amplitude in segment 1-3 is no longer small, we shall nevertheless 
attempt an estimate of the slope (daldf;),,, at 3 by application of the linearized wave 
solution. For various reasons mentioned earlier, having to do both with the mechanics 
of the flow and the structural mechanics of the tube, the shape of the curve of a(f;) in 
the final segment 3-2 of the shock lies outside the scope of this paper. 
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6.2.  Maximum slope of standing area waves 
The curve a(€J is expressed as the sum of two parts: one represents the virtually 
constant gradient due to a mean friction, the other represents the spatial area oscilla- 
tions. Thus, utilizing equation (20) but with o = 0, we write 

(" ") 5 + 6i exp [ - ik, DOE[], (33) 

where = Bexp [kiDoE] represents the amplitude of the envelope (dashed in figure 7) 
of the area waves, taken with respect to the mean curve of constant slope da/df. 

Differentiating (33), and using the maximum value of the slope da/df,  we form the 
parameter /3, representing the ratio of the maximum oscillatory slope to  the local 
wave amplitude : 

a=ao+ d5 

Ignoring the effects of friction on wavelength, we assume that kr = ko. Then, 
introducing k, = 27rn/h, from (27), and replacing T by 8, Eh, we get 

- 
We note that da/df is relatively small in (34); that, usually, the local value of f l  B 1; 

and that, for a given tube, E, Do and h are constant, while c ,  is nearly constant over a 
broad range of a. Accordingly, equation (35) shows that the inflection-point slope 
vanes with the parameters of tension, speed index, and Z approximately in proportion 
to (da/dE[),,, - dB( 1 - Z ) ~ / ( E ~ J + .  

6.3. Steepness of shock 
(a) Estimate based on wave train. We now take the bold step of applying (35) to the 
segment 1-3 in order to estimate the maximum slope (da/df) of the shock. A few 
additional rough estimates are necessary, as follows: (i) the mean slope da /d f is  
ignored in comparison with (da/d&,,,; (ii) we assume a3 to lie midway between a1 and 
aa, and further assume that aa II 1, so that a3 N B( 1 + a,) ; (iii) we assume the amplitude 

a t  the shock to be half the final jump in a, that is, 8$ = *(aa - a,) = Q( 1 - a,); (iv) the 
speed index'S, is assumed sufficiently large so that (8: - 1) 2: 8:; (v) the wave speed c ,  
is taken to be constant over the range 1-3. 

With these assumptions, and with the help of the continuity equation to relate states 
1 and 3, namely u3U3 = ulal, equation (35) applied to the wave segment 1-3 yields 

(b )  Physical consideration of shock steepness. A result similar to (36) may be obtained 
which does not depend on the wave train calculation, but rather proceeds from physical 
arguments, as follows. 

The deceleration through a stationary shock, u &/ax, entails a pressure rise which 
accounts for the area increase to the inflated condition, a N 1. 

Due to nonlinearities, a propagating shock of large amplitude tends to steepen. Its 
stationary form is ultimately determined by a balance between two competitive effects: 
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(i) the steepening effects of inertia, and (ii) the mechanical stiffness against steepening 
due to longitudinal tension and bending. For the present argument we consider only 
tension; bending would act somewhat similarly. 

In  order to make an order-of-magnitude estimate of the stationary shock form, we 
assume that in (2) the two terms udu/dx and ( l /p)ap/ax are dominant. Thus they 
must be of the same order of magnitude. However, if the tendency of the pressure rise 
to open the tube rapidly is resisted mainly by longitudinal tension, then the ‘inertial 
pressure’, ipu?, must be of the same order of magnitude m the ‘tension pressure’, 
A&. Using equation (8), we write 

When this is combined with assumptions like those that led to (36), we get a result of 
exactly the same form, but with greater uncertainty as to the magnitude of the numeri- 
cal coefficient. 

The physical arguments outlined here suggest, however, that (36) overestimates the 
shock steepness because it neglects the unsteepening effect of longitudinal bending, 
an effect which may be important in shocks. 

6.4. Comparison with experiments 

The maximum shock gradients (du/dE),, as determined graphically from the data of 
the tension-friction experiments of part 1, are plotted in figure 8. Also shown as a 
straight line is the theoretical estimate of (36). 

The data exhibit considerable scatter, owing to  the difficulty of measuring (daldt) , .  
However, both in form and scale, the results are in general agreement with the model 
here suggested, confirming that the forward part of the shock and the rearward part of 
the wave train are indeed the same. 

The lower points in figure 8 are associated with the smallest axial tensions. In  those 
cases longitudinal bending would be relatively more important as a stiffness against 
shock steepening, and would tend to decrease the shock slope, in agreement with the 
data. 

7. Numerical experiments 
In this section results are presented based on numerical integrations which take 

account of nonlinearities in the governing equations. We consider steady, initially 
supercritical flows in a horizontal tube, with significant longitudinal tension and fric- 
tion, but negligible longitudinal bending. 

The general objectives of the numerical experiments were to explore the limits of 
the linearized theory and to obtain some insight into nonlinear effects associated with 
large amplitudes. 

7.1. The calculational model 
(a)  Tube law. In  0 2 it was pointed out that the structural model on which (7) is based 
is not valid aa a --f 1, and that this is in part reflected by the b€ow-up of the term (1 - a)) 
in the denominator. Since this term is not in any case strongly nonlinear, except as 
a + 1, it has been set equal to unity for the numerical experiments. 

We also neglect the nonlinear term in (da/dc)2 in (7), partly because it is usually 
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FIGURE 8. Shock steepness. Open points, experimental data (symbols correspond 
to figure 5);  -, equation (36). 

small compared with the leading linear term, and partly because its nonlinear influence 
is small compared with the strong nonlinearity due to the term that appeam sub- 
sequently. 

The several assumptions above, applied to (6) and (7), lead to the expression 

T d2a 
p - p e  = Kp9'(a)--- 

4 0 ,  df2' 

(b)  The. governing quation. Assuming T and pe both constant, dp/dx is calculated 
from (38) and substituted into (2), with the further simplifications that a/at = 0, 
a/a[ = d/d[  = 0. The result is combined with (1)  in the form d(uA)/d[ = 0. Finally 
one obtains 

in which the nonlinearities are the strong one in a-s and the weak one in (1 - LS~)/LS'~. 
The tension term, Td3a/d53, in (39) radically changes the possible behaviour 

patterns. In  the absence of tension, the term 1 -S2 changes the sign of da/d[ at 
S = 1. Consequently the integral curves admit the possibilities of (i) choking when 
S = 1 ;  and (ii) continuous transitions between S < 1 and S > 1 ,  but only on 
singular curves (Shapiro 1977). With tension present, on the other hand, the 
character of the governing equation changes, and the aforenamed possibilities, 
familiar from gasdynamics and free-surface flows, disappear. 
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FIGURE 9. Numerical integrations, with So = 10.0, a, = 0.275, E ,  = 0.10, f = 0.007 42. 
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FIGURE 10. Numerical integrations, with So = 10.0, a. = 0.275, a, = 0.025,f = 0.007 35. Heavy 

line, (daldt), = 0.30; medium line, (da/dt)o = 0.135; light line, (da /d t )o  = 0.195. 

( c )  Numerical procedure. Three boundary conditions on a and its derivatives are 
needed in order to obtain solutions to (39). In the physical experiments, the latex tube 
is compressed by the sphincter at the upstream end and is attached to a rigid tube at  
the downstream end; thus a is physically established at the two ends. A third boundary 
condition, on the values of a and d2a/d[a at the downstream end, is determined physic- 
ally by the level of downstream pressure. Since the flow rate Q (to which both u,, and S 
are related) is constant, dQ/d[ = 0. Use of this converts (39) into a differential 

'4 F L M  I 0 9  
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equation of fourth order. The fourth boundary condition that then becomes necessary 
is provided physically by the inlet pressvre, which is connected to the values of a and 
d2a/dt2 at the inlet end. 

These boundary conditions are mathematically of jury type. Brower (1970) 
attempted numerical integrations of flows with subcritical inlet states, using such 
boundary conditions. Not surprisingly, a cumbersome and time-consuming iterative 
technique was required to match the physical boundary conditions. Furthermore, the 
adjustment of the area to the downstream rigid area often occurs in a relatively short 
distance, and it would be inappropriate to neglect longitudinal bending moments in 
such an end region. 

For the numerical experiments, therefore, we did not attempt to simulate the 
physical experiments in entirety but rather we set out to explore numerically certain 
phenomena. Accordingly, equation (39) was integrated not with the physical boundary 
conditions but rather with alternate conditions for which the problem was of marching 
type. Values of a,, (da/df), and (d2a/dg2), were selected at one location, together with a 
value for Q, and the equation was then integrated forwards in 6. The value of a, was 
chosen arbitrarily; (d2a/dt2), was set equal to zero; and ( d a l d t ) ,  was given various 
arbitrary values. The difference between the chosen value of (daldC;), and the value of 
the friction-induced mean gradient daldt  for the tension-free case represented an input 

FIQURE 11. Comparison of wavelengths from numerical integrations (points) with line represent- 
ing equation (27), from which the factor (1  - a)i has been deleted. 0, E ,  = 0.025; 0,  0.050; 0, 
0.100; A ,  0.200. 
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FIGURE 12. Numerical integration. Same conditions as for figure 9, but with oscillatory skin- 
friction coefficient (T = 0-03), and with (dcr/d& = 0.03. Dot-dmh line is initial mean elope 

disturbance which generated tension waves; the larger this difference, the larger the 
computed wave amplitude. 

In  carrying out this procedure, (39) was reduced to a system of three simultaneous 
first-order, ordinary nonlinear differential equations. A standard fourth-order Runge- 
Kutta routine was then used to integrate the system of equations numerically (Horn- 
beck 1975). A spatial step size of magnitude A t  = 1/40 gave satisfactory results with 
respect to stability and truncation error. 

dald5. 

7.2.  Results of forward integrations 
(a)  Cowtant skin-friction coeficient. Figure 9 shows computed results for a case with 
moderately large tension and with three different amplitudes of input disturbance. 
Figure 10 refers to  the same initialvaluesof a, and So, but with a tension one-fourth as 
large. The numerical results show the same general behaviour as the experiments 
(part 1). Superposed upon a mean (and nearly linear) gradient da/dg due to friction is a 
standing wave whose amplitude increases in the downstream direction. 

As one expects intuitively, and in agreement with the experimental data (part 1) 
and the linearized theory, tension increases the wavelength. For small amplitudes, the 
wavelength is independent of amplitude. As the amplitude gets large, however, the 
wavelength increases. 

From integrations like those of figures 9 and 10, peak-to-peak and trough-to-trough 
wavelengths were measured for cases with amplitudes of a of the order of 0.1. In 
figure 11 these are compared with the theoretical, small-amplitude, inviscid dispersion 
relationship of (27), but with the factor (1  - Z)# omitted since it was omitted in (38) and 
(39). The scatter of the points about the small-amplitude theoretical line arises from 
two sources. One is the error in h due to purely numerical truncation errors in the 
integrations. The other is that (27) applies to precisely sinusoidal waves in a flow 

14-2 



414 M .  E .  McClurken, 1. Kececioglu, R. D. Kamm and A .  H .  rShpiro 

t 

t 
I 1 1 I I c 

0 5 10 15 20 
E 

FIGURE 13. Numerical integration. Same conditions aa for figure 10, with oscillatory skin- 
friction coefficient (7 = 0.01), and with (da/d&, = 0.03. Dot-dash line is initial mean slope 
da/& 

without friction and with no mean gradient in a; apart from the effect of friction on 
the phase speed, errors are introduced because one has to select, from outputs like 
those of figures 9 and 11, the mean values of S and appropriate to a particular 
wave of length A. 

The significant conclusion to be reached from figure 11, therefore, is that the inviecid 
dispersion relationship is generally accurate even with non-sinusoidal, growing waves 
in a frictional flow which has a mean gradient da/dE. 

Growth rates (or decay rates in the - 5 direction) for the wave trains shown in figures 
9 and 10 compare well with the small-amplitude theoretical result of (29a). For very 
small amplitude waves the comparison is within f 2 %. When the amplitude & 
becomes quite large, say 3 > 0.10, the linearized result begins to fail. Furthermore, as 
S approaches unity in some part of the wave, (29a) shows extremely rapid wave growth, 
which concomitantly induces large amplitudes that vitiate the linearized results. 
This behaviour suggests that the amplifying oscillatory wave terminates itself aa a 
shock when the area grows so large that the tube becomes much stiffer and the flow 
becomes subcritical. 

(b) Oscillatory skin-friction coeflcient. Figures 12 and 13 correspond to figures 9 and 
10, respectively, but they show the effects of an oscillatory component of skin-friction 
coefficient f’ = r d2a/dt2. 

A comparison of figure 12  with 9 ,  and of figure 13 with 10, shows that a small com- 
ponent f’ greatly increases the growth rate of the waves, and also causes the waves to 
become more asymmetrical. Furthermore, the mean slope d a / @  is not constant, but 
increases progressively as the amplitude grows. 

The growth rates about the mean gradient line were compared with values calculated 
from (32). For the first three or four waves, when the peaks and troughs are still reaaon- 
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ably symmetric about the mean gradient line, the peaks decay at a rate about 10 yo 
larger than the linearized results, while the troughs decay at a rate about 10 % less. 
Similar numerical integrations for cases in which there is no mean gradient and the 
amplitudes are very small yield results in agreement with (32). 

This paper and its companion paper Kececioglu et al. (1981) are based on the theses 
of Kececioglu (1979) and McClurken (1980). The research ww supported by the Fluid 
Mechanics Program of the National Science Foundation(Grant no. Eng 76-08924) and 
by Fellowships (to McClurken) from the National Institute of General Medical Sciences 
(Grants no. GM-02138 and GM-07301). 
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